If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21x^2-84x+65=0
a = 21; b = -84; c = +65;
Δ = b2-4ac
Δ = -842-4·21·65
Δ = 1596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1596}=\sqrt{4*399}=\sqrt{4}*\sqrt{399}=2\sqrt{399}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-2\sqrt{399}}{2*21}=\frac{84-2\sqrt{399}}{42} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+2\sqrt{399}}{2*21}=\frac{84+2\sqrt{399}}{42} $
| x-0.05x=240000 | | -(a-9)=3a+17. | | 4x+14=18x+6 | | 6s-30=180 | | 8(b+4)-9=2b+8 | | -39=5(x-5)-7x | | 314+x=344 | | 1.44x-9=0.36 | | 6(s+30)=180 | | 4x-x-7=26 | | 6p-7=-1+4(p+5) | | a+2.4=7.8;a=4.3 | | x÷3=76 | | 9x-2=304 | | -10x=4x+4 | | 5(5-4g)=145 | | 2x+3x+5+25=180 | | 2x+3x+5+25=1180 | | 3(p-6)+1=9p-8 | | 12(x-4)=84 | | 5(u+3)-7u=17 | | 2/8=x36=27 | | -6/4y=6 | | -210=-70x | | 3x+350=950 | | F(x)=(3x+1)(2x-1) | | 3x=(10.5-x)4 | | 63+0.99x=1.69x | | -8=5(y-2)-7y | | -(4x+7)=-7(1+2x) | | 18z^2-31z+12=-2z^2 | | 8/3+3x/7=68/21 |